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ABSTRACT

The methodology of Adaptive Learning Network Training has been used to model

mass loss ratios resulting from single particle impacts on carbon-carbon

composite materials. The resulting ALN models identify material bulk density,

graphitization temperature, dynamic hardness (A), and the stiffness exponent

(N) as the parameters that most affect the erosion resistance of Series 300

and Series 400 materials. The development of more detailed models was made

difficult by the limited variety in the experimental data base.
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1. INTRODUCTION

The development of erosion-resistant carbon-carbon nosetip materials is a

problem area of current interest, particularly as water droplets and particu-

lates in the atmosphere tend to produce nosetip erosion that affects the

survivability and accuracy of re-entry vehicles. Currently, several

approaches are used to advance understanding of this erosion process:

(1) analytical modeling of material properties, and

(2) experimental development and testing of materials.

There are problem areas with both approaches. The analytical models are

generally quite expensive to use, and the comparison of model predictions to

actual data is difficult. Analytical models are often criticized on the

grounds that the input of material properties data removes the model from the

category of "first principles," and the requirement that such data be inpit

results in more, not less, experimental materials testing. Additionally, the

material properties are not easily related to variables that can be controlled

during the manufacturing process.

The experimental approach also has difficulties, especially the time and

expense required to fabricate and test sample billets, the large number of

manufacturing variables that can be altered, and the variety of tests required

to determine material properties. Consideration of the many parameters that

could be tested in an experimental program shows that comprehensive testing

over the full ranges of all the parameters is impractical; thus experimenters

must pick and choose among the subelements of the test matrices that will be

populated with test data. An important limitation to such an approach is that
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usually only one variable at a time is altered, and therefore interactions

among parameters are difficult to discover.

Additional tests are obviously necessary to couple the modeling and experimen-

tal worlds. Ideally, such tests would consider material and manufacturing

parameters, and help to organize or integrate the available data for both

communities.

The Adaptive Learning Network (ALN) modeling methodology is an empirical

modeling methodology that can be used to aid in the study of the erosion

resistance of carbon-carbon materials. The primary objective of the work

reported herein has been to investigate the feasibility of using the ALN

technique to organize a set of data from single-particle impact testing of

carbon-carbon materials.

The principal ddvantage of the single-particle ballistic impact test is that

it permits careful control over parameters such as impact velocity, tempera-

ture, and particle size, shape, and composition. A wide variety of materials

can be tested, and the impacts on previously damaged targets can be used to

study the incremental effect of a single impact during the erosion process.

The goal of single-particle-impact testing is to relate the observed cratering

to the material properties, the impacting particle, and other variables such

as temperature, impact velocity, and impact angle. The material properties

stem from to variables controlled in the manufacturing process. These vari-

ables include material type and weave, densification techniques, graphitiza-

tion processes, etc.
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A well-defined model of the erosion process could, in principle, be interroga-

ted to determine which manufacturing processes lead to acceptable (perhaps

even optimum) erosion performance while meetring other constcaints (such as

ablation).

The work reported here is a first step in the direction of meeting these

goals. Section 2 contains an overview description of the ALN modeling

methodology. The data analyzed in this work are described in Section 3. The

results of ALN modeling of the data are presented in Section 4. A discussion

of the results, potential applications to other data, and recommendations for

further research are presented in Section 5.
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2. ADAPTIVE LEARNING NETWORK SYNTHESIS METHODOLOGY

2.1 INTRODUCTION

Adaptive Learning Network Synthesis is a powerful method through which data

that are obtained as the result of "obseiving" a physical process are used

to construct a model of that process. Often, the rationale for modeling a

process is to detect or classify a particular occurrence in the data, to make

future predictions about the process, to control the future behavior of the

process, to summarize important features of the process, or, in the present

case, to discover the underlying (and unknown) structure.

The classical approach in the design of detection, classification, modeling,

estimation, and signal processing functions has been to determine explicitly

all of the relevant characteristics (deterministic and/or statistical) of the

observed process and to use those measurements and assumptions in the synthe-

sis of the model. Often, the mathematical structure of the true process is

assumed, and the design process consists of calculating the coefficients of

the theoretical model equations. But, in many cases, the inputs or

observables cannot be related to the output of the process in an analytical

fashion. Further, the best or even an acceptable structure for the model

cannot be determined a priori. Linear models are often used in these cases

simply because the mathematics of more general models are falsely believed to

be intractable.

2-1



When a linear model does not describe satisfactorily the particular set of

data, it is desirable to implement the mathematical model as a general (usual-

ly nonlinear) function of certain input variables that we can call observa-

bles. Since the details of the relationships between the input variables

and the output variable or variables (the outputs of the process) are not

known, the parameters and structure of the model are not known a priori.

Rather, the model has to be "trained" from a data base of representative

inputs and corresponding outputs.

To achieve trainability, the Adaptive Learning Network methodology uses, as

a model of the observed process, a network of similar elementary building

blocks. ThR training process, or model synthesis, specifies the parameters of

the elementary building blocks as well as their number and the interconnec-

tions between them. In this way, the structure and coefficients of the model

are derived from observations of the process. The questions that must be

answered to arrive at this result are:

" What should the structure of the elements of the network be?

" How should the element parameters be adjusted?

* How should the elements be interconnected and what should be their
complexity (i.e., number)?

To answer these questions, suppose that the input consists of N observables,

X1, x2, ..., xN . Also, suppose that a given output variable is a scalar whose

value may be considered as the estimate of some property of the input

process. In general, y will be some nonlinear function of the xi's:

y = f(x 1 ' x2, . , CN) (I)
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2.2 POLYNOMIAL (MULTINOMIAL) APPROXIMATION

Under fairly general conditions, a function of N variables may be expressed in

an N-dimensional series (Refeirnces 1-3):

N N N N N N
y = a 0 + ) a x. + Z E 'a . x.x. + E a xijkxixj + ... (2)

i= I  i=1 j=1 i=1 j=1 k-l

In the most general case, the coefficients, a0 , al, ... , are functions of

time, but for many cases of interest, the underlying characteristics of the

x's do not depend on time and, consequently, the coefficients are constants.

Two questions which arise in the use of Equation (2) are:

o What are the observables or features (xi S)?

o How many terms in Equation (2) will provide an acceptable approxima-
tion to the desired function, f, in Equation (1)?

The answer to the first question is that those features that the analyst or

designer believes could have a significant role in the application should be

evaluated initially. The relevant features are selected by the learning

algorithm; features that trials show to be of little or no use are discarded.

The second question is answered by using a nonlinear ALN whose complexity

determines the number of terms in Equation (2). The network consists of

interconnected basic elements; each basic element implements a simple non-

linear function of one, two, or three inputs. The entire network is trained

(by adjusting the coefficients of the basic elements and the interconnections

among the basic elements) to provide an acceptable approximation to Equation

(1).
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The basic element of the Adaptive Learning Network is a three-input device

that implements a nonlinear function of inputs x, cX2, and x3 :

y = w0 + W1X1 + w2X2 + w3x3

+ W4X1x2 + W5x1x3 + w6x2x3

(3)

2 2 2
+ w7 x 1  + w8x 2 + w 9 x 3

10 1 2 3 11 1 12 2 13 3

To reduce computational complexity, not all elements are allowed to use three

inputs. Most elements contain only two inputs x1 and x2

y = w0 + wx1 + w2x2 + w4xx2

(4)
2 2 3 3

+ w 7x 1  + wX 2 + w1 1 x1  + w12x 2

Some elements contain only a single input.

2.3 NETWORKS OF THE BASIC ELEMENT

A network of two layers of basic elements can contain products up to the ninth

degree. Thus, fairly complex multinomials can be built in a few network lay-

ers. To implement a fully general uiltinomial, the number of elements in each
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layer would have to grow as one adds additional layers to the network. It has

been found empirically (Reference 4) that acceptable networks can be obtained

without such growth; in fact, the number of elements in successive layers

decreases so that only a few layers are needed in the final network.

2.4 ADAPTIVE LEARNING NETWORK TRAINING

Adaptive Learning Network training is accomplished using a training data base

for which the values of the observables (independent variables) and the de-

sired output (dependent) variable are known. Here, "independent" means

independently observed; the input variables need not be statistically

independent.

Figure 2.1 illustrates a hypothetical data base consisting of four independent

variables and one dependent variable. We wish to construct a model of the

dependent variable, y, based on observations of the independent variables, x1 ,

x2, x3, and x4 . It is assumed that M observations of xl,..., x4 have been

made and that the actual output of the process, y, has been determined experi-

mentally for each observation.

y = F(x I, x2, x3' x4 ) (5)

Five steps are involved in the training process:

(1) Optimization of the coefficients in each element of the first layer.

(2) Selection of those elements whose output is acceptable and rejection
of poor performers.

(3) Iteration of (1) and (2) for successive layers of the network.

(4) Termination of network evolution before overfitting occurs.
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Y = F(XI, ^2A' 2jX3"1 Y4

Y (X X2  X3  X4

Y1 Xll x12 x13 X14

Y2 x21 x22 x23 x23

YM XM1 XM2 XM3 XM4

FIGURE 2.1: SCHEMATIC REPRESENTATION OF EXAMPLE DATA BASE
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(5) Global optimization of the coefficients of the final network
(optional).

2.4.1 Partitioning of the Training Data Base

Several competing requirements must be met in the training of ALN's. The ALN

model should provide a good representation of the experimental data base. The

model should also provide a similarly good model for data that have not yet

been observed. In other words, the model should generalize to data that have

not been used in the training process. To achieve this, the ALN model should

not overfit the training data. To train the network and at the same time to

insure that the network does not overfit the training data, the method of

Cross Validation can be used. In this case, the training data base is divided

into three independent but statistically similar subsets (Reference 5).

(1) Fitting Subset (F)

(2) Selection Subset (S)

(3) Evaluation subset (E)

The fitting and selection subsets are used in the network training process.

The evaluation subset is withheld from the training process and is used after

ALN synthesis to evaluate the performance of the ALN. The evaluation subset

serves to present new and previously unknown data to the ALN; performance on

this set of data determines the extent to which the ALN is able to generalize

from the training data.
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The division of the data base into independent subsets may be accomplished

with the Mucciardi-Gose Clustering Algorithm (Reference 6). Figure 2.2

illustrates the cluster structure typically observed in many data bases. In

the multidimensional space of the independent and dependent variables, it is

often seen that the data form separate groups or clusters. The clusters

generally represent different states or conditions of the system. Figure 2.2

shows the structure schematically; real data clusters are considerably more

complex and may form overlapping and intertwined clusters.

The division of the data base into subsets should reflect the natural struc-

ture of the data base. This is shown in Figure 2.3, where each of the

clusters is randomly divided into three subsets. The subsets of the clusters

are joined to form the fitting, selection, and evaluation subsets.

2.4.2 Network Training

The network structure and element coefficient determinations are based upon a

numerical fit to a desired output. The fitting and selection subsets are used

alternately to train each layer. First, the N possible inputs to each layer

are arranged into N(N-1)/2 pairs which are used as inputs to an equal number

of two-input elements. The fitting subset of the known data base is applied

to establish the coefficients of each element, using a least-squares adjust-

ment of the coefficient. Next, the selection subset is used to eliminate the

poor performers: those elements whose performance is not acceptable, as

measured by an error criterion. Finally, the surviving elements are examined

to determine whether or not performance can be improved by using a three-input

element, where two of the inputs are chosen from the best performers among the
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FIGURE 2.2: CLUSTERING OF DATA BASE IN DATA SAMPLE SPACE
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two-input elements. Three-input elements are saved if their performance is

acceptable.

In the hypothetical example, where there are four observable quantities, there

are six possible elements in the first layer of the network. These are shown

in Figure 2.4.

Inputs to the second layer of the network include the surviving outputs of the

first layer as illustrated in Figure 2.5, as well as the original inputs to

the first layer. This allows the network to include interactions among multi-

ple observables which might be eliminated if only outputs from a previous

layer lead into the next layer. Again, the fitting subset is used to adjust

the coefficients of the elements; the selection set eliminates poor perform-

ers, and these input elements are examined for pairs of inputs that give good

performance. Figure 2.5 shows several possible elements in the second layer

of the network.

The modeling process is repeated, adding additional layers until the error

rate on the selection subset reaches a minimum. The typical behavior of the

error rate for the fitting and selection sets is shown in Figure 2.6. By

incorporating additional layers in the network, the number of coefficients

increases and the error on the fitting subset can be made arbitrarily small.

At some point in the process, the error on the selection subset reaches a

minimum. Beyond this, it can be seen that the network begins to take on char-

acteristics that are exclusive to the fitting subset and different from the

selection subset. Because the two subsets are statistically similar (by con-

struction), this signifies that the network overfits the data. The addition
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FIGURE 2.4: SIX BASIC ELEMENTS IN FIRST LAYER OF EXAMPLE NETWORK

2-12



Y2

Y3

yy

3 3l

FIGURE 2.5: THREE BASIC ELEMENTS IN SECOND LAYER OF EXAMPLE NETWORK

2-13



0 CROSS VALIDATION

ERROR

X FITG Q
O S==TONG

A

#LAYERS

* INFORMATION THEORETIC CRITERION

ERROR + PENALTY = MIMNUM

AIC = -21n (MAXIMUM LIKELIHOOD)

+ 2 (NUMBER OF CCEFFCIENTS) MINIMUM

FIGURE 2.6: OVERFIT DETECTION
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of layers is stopped where the error on the selection subset is a minimum. In

Figure 2.6, it can be seen that overfitting occurs in the fourth layer of the

network. Synthesis of the ALN would be terminated in this case with three

layers.

When the appropriate number of layers has been found, the last layer will in

general comprise a plurality of elements, each capable of producing an esti-

mate of the dependent variable. These estimates may be weighted and summed,

or the single element that produces the lowest error rate vis-a-vis the selec-

tion subset may be retained while the remaining elements not needed to feed

into the surviving output are discarded. For example, in Figure 2.7, assume

that Y2  yields the best performance. In this case, the final network struc-

ture would be as is shown in Figure 2.8.

The final (optional) step in the training process is a vernier adjustment, or

fine tuning, of all of the network coefficients. This step may be desirable

because the coefficients of each element were adjusted in the absence of

interactions among the elements. Thus, the optimum coefficient values may be

different when the interactions are present. The fitting and selection sub-

sets are also used to make the vernier adjustment. After final adjustment,

the evaluation subset is used to estimate the performance of the network.

As can be seen from this discussion, the candidate independent variables that

feed the final network element may be selected or rejected at several stages

as the network is trained. Also, a number of basic network elements may be

considered and then rejected as the final network design is reached. The

ability of the training process to discard input variables allows the analyst
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the freedom to propose many input variables as candidates for the network

inputs. The training process determines which of these inputs are actually

useful, discarding the rest. In this way, the most economical set of input

variables can be used in the final network; it is not necessary to narrow down

the choice to just a few candidate inputs prior to training the network.

2.5 RECENT ADVANCES IN ADAPTIVE LEARNING NETWORK SYNTHESIS

The above discussion illustrates the role of the independent fitting and

selection subsets in Cross Validation training an ALN. Other techniques that

make use of information theoretic criteria permit overfit detection without

requiring subdivision of the training data base. One such technique makes use

of an error criterion that is a modified form of Akaike's Information Criteri-

on (AIC) (References 7 and 8). Essentially, this error criterion produces a

model of the modeling process and supplies a penalty for models that contain

an excessive number of parameters. The use of this error criterion obviates

the need for separate fitting and selection subsets.

The modified AIC is used in Adaptronics current version of the ALN synthesis

program, PNETTR IV (Reference 9). Because separate selection and fitting

subsets are not required by PNETTR IV, ALN training and adjustment of coeffi-

cients can be carried out using a larger number of observations than were

previously available. This is particularly useful for small data bases.
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3. DATA BASE

The data that were analyzed during this project consist of single-particle im-

pacts on carbon-carbon composite materials. Data for two basic material types

(Series 300 and Series 400) were available for virgin material samples and

previously damaged samples. All of the data consisted of normal-incidence

impacts of a single-particle type. Testing variables included temperature,

impact velocity, various material manufacturing processes, and material

properties. The specific erosion damage measurements included mass loss and

crater size and shape. The parameters present in the data base are given in

Table 3.1.

The data were compiled from two sources. The first set of data was supplied

to Adaptronics by the Air Force Materials Laboratory (AFML). A second set of

data, provided by Effects Technology, Inc. (ETI) of Santa Barbara, California,

added several additional observations to the available data base. The avail-

able data are described in Tables 3.2 and 3.3.

As is shown in Tables 3.2 and 3.3, the data base is limited. Additionally,

complete information was not available for all data points. Thus, the results

obtained in this study should not be considered to constitute broadly based

models of erosion damage. Rather, these results will serve to illustrate the

means by which the ALN technique can be used to organize and draw inferences

from the data.
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TABLE 3.1: SINGLE-PARTICLE IMPACT EROSION DATA BASE

Test Measurements

Gm - Gravimetric mass loss ratio

Gv - Volumetric mass loss ratio

Depth - Crater depth (mm)

Radius - Crater radius or width (mm)

Elong - Crater elongation (length/width)

Manufacturing Variables Material Properties

Material Code - Material billet number Bulkden - bulk density (gm/cm3

(coded)

Weave - Type of weave used in Openpor - open porosity of
construction material

Fiber - Type of fiber A - Dynamic hardness (virgin) used
to define dynamic hardness

Cycles - Number of material processed N - Stiffness exponent (virgin)
heat cycles used to define dynamic hardness

Graph - Graphitization temperature Shear - Dynamic shear strength at
700C

LastGr - Last graphitization tempera- Den - Specimen density (g/cm3

ture used in manufacture

CVD - Chemical vapor deposition (wt. %)

Test Parameters

Material State - State of material before ) 1 = origin
impact )2 = predamagedf

Ptype - Impacting particle type (coded)

Angle - Impact angle (degree)

MPart - Mass of impacting particle (mg.)

Vel - Impact velocity (Kft/sec)

Temp - Specimen temperature (OF) before
impact
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TABLE 3.2: TEST OBSERVABLES - SERIES 300

# Observations of
M. Code State GM GV Depth Radius Elong.

301 1 3 3 0 0 0

302 1 3 3 0 0 0

303 1 3 3 0 0 0

304 1 3 3 0 0 0

305 1 1 1 1 1 1

306 1 1 1 1 1 1

307 1 2 2 2 2 2

308 1 1 1 1 1 1

309 1 1 6 1 1 1

310 1 2 2 1 1 1

311 1 1 2 2 2 2

312 1 3 3 2 2 3

313 1 1 1 1 1 1

314 1 0 10 0 0 0

316 1 14 21 0 0 0

317 1 2 2 0 0 0

46 64 12 12 15

306 2 3 3 1 1 3

316 2 5 0 0 0 0

8 3 1 1 3

* Elongation is either 1.0 or not measured
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TABLE 3.3: TEST OBSERVABLES - SERIES 400

# Observations of
M. Code State GM GV Depth Radius Elong.

401 1 2 2 2 2 2

403 1 10 14 14 14 14

404 1 1 8 1 1 1

405 1 2 2 1 1 2

406 1 1 2 2 2 2

407 1 2 2 2 2 2

409 1 11 13 0 0 0

410 1 2 6 0 0 0

402 1 2 2 2 2 2

408 1 2 2 2 2 2

35 53 26 26 27

406 2 3 3 2 2 3

409 2 3 0 0 0 0

410 2 7 0 0 0 0

13 3 2 2 3
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3.1 MATERIAL PROPERTIES

The resistance of a particular material to erosion damage is obviously related

to the physical properties of the material. These are, in turn, related to

the manufacturing process through which the materials were created. Varia-

tions in the manufacturing process reflected in the data base are given in

Tables 3.4 and 3.5.

Two basic material types are available in the data base. These are identified

as Series 300 and Series 400 materials. Each is a carbon-carbon composite

material consisting of a HM2000 fiber weave to which additional carbon has

been added by a process known as graphitization. The Series 300 materials are

based on weave type 4; Series 400 materials are based on weave type 6. The

graphitization process is repeated for several cycles to add additional mate-

rial. The material density increases with the number of processing cycles.

Most data present in the data base were manufactured using five cycles; sev-

eral observations exist for four cycles and ten cycles. As a result, the

erosion damage for this data base should not depend greatly on the number of

cycles used in manufacturing.

Within a given material type, the principal manufacturing variable is the

temperature(s) at which the graphitization process is carried out. Two temp-

eratures are specified in the data base: graphitization temperature and

temperature of the final graphitization cycle.

Open porosity is created in the material by impregnating the material with

mercury or gases prior to graphitization. The degree of porosity then depends
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TABLE 3.4: SERIES 300 DATA - STATES 1 AND 2

# Obsv. # Obsv.

Mat Code Weave Fiber Cycles Graph Last Gr CVD State 1 State 2

301 4 2 5 2750 2750 5.32 3

302 4 2 5 2980 2750 0.00 3

303 4 2 5 2980 2750 0.97 3

304 4 2 5 2980 2750 4.07 3

305 4 2 5 2300 2300 -- 1

306 4 2 5 2300 2300 0.00 1 3

307 4 2 5 2700 2700 0.00 2

308 4 2 5 2750 2750 4.56 1

309 4 2 5 2700 2700 -- 6

310 4 2 4 2300 2300 0.00 2

311 4 2 4 2450 1500 -- 2

312 4 2 5 2450 1500 -- 3

313 4 2 5 270u 2700 0.00 1

314 4 2 5 2650 2750 1.90 10

315 4 2 - -- -- -- 0

316 4 2 5 2700 2700 -- 23 5

317 4 2 10 2700 2700 -- 2

66 8
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TABLE 3.5: SERIES 400 DATA - STATES 1 AND 2

# Obsv. # Obsv.
Mat Code Weave Fiber Cycles Graph Last Gr CVD Open Por State 1 State 2

401 6 2 5 2650 2650 0.0 - 2

402 13 2 5 2650 2650 0.0 - 3

403 6 2 5 2650 2650 0.0 - 14

404 6 2 5 2700 2700 0.0 4.2 9

405 6 2 5 2300 2300 0.0 5.5 2

406 6 2 5 2750 2750 0.0 4.4 2 3

407 6 2 5 2750 2750 0.0 - 2

408 6 3 5 2980 2980 0.0 6.1 2

409 6 2 5 2700 2700 0.0 - 14 3

410 6 2 5 2700 2700 0.0 - 7 7
57 13
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on the manufacturing temperature. Porosity is also related to the strength

and density of the resulting material. Open porosity is reported for only a

small fraction of the available data.

Chemical vapor deposition is also reported as non-zero for a small fraction of

the data base.

Material properties that result from the manufacturing process are represented

by material bulk density, actual sample density, dynamic shear strength, dy-

namic hardness (A), and stiffness exponent (N). Values of all of these vari-

ables are not reported for all observations. The dynamic shear strength is

the parameter most likely to be missing from the data base, and the hardness

measurements are missing for a significant number of observations.

3.2 IMPACT TEST PARAMETERS

The primary testing variables are the impacting particle type and mass, impact

angle, impact velocity, and the temperature of the sample at impact.

It is important to note that, for this data base, the range of the test vari-

able values is quite restricted. Thus, little dependence on the impacting

particle mass can be gleaned from the data. The two temperature regions in

which data are available pose some problems due to the fact that, at tempera-

tures exceeding 4000 degrees, the composite material sublimes, yielding mass

loss in the absence of an impact.
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Impact velocities in the range from 5 to 20 kft/sec are present in the data

base. For the most part, however, the velocities are predominantly in the

range of 13 to 15 kft/sec. Based on fairly simple theoretical estimates, one

would expect the mass loss to vary with the kinetic energy of impact or as

velocity squared. The limited data available here do not support such a

determination from the data. Distributions of impact velocities are given in

Figures 3.1 and 3.2.

3.3 DATA SUMMARY

Although the data are limited, there are certain variables for which there is

a reasonable degree of variation present. These include the manufacturing

graphitization temperatures, material density, and material hardness coeffi-

cients A and N. We can, therefore, expect that ALN models that relate erosion

damage to the properties of the materials would be most easily extracted from

the data base. ALN models of erosion damage as a function of impact velocity

and/or temperature are less likely to represent the full physical behavior -)f

the modeled process. Such models will, however, serve to indicate the major

dependence of the erosion damage on impact velocity and/or temperature.

The two types of materials present in the data base will respond differently

to erosion damage. An ALN model can be used to determine which manufacturing

process or materials properties are major contributors to these differences.
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4. ADAPTIVE LEARNING NETWORK MODELS

The dependent variables of interest are the gravametric (G m ) and volumetric

(Gv ) mass loss due to single-particle impacts. Other parameters, such as

crater depth and radius, are reported for only a few observations. As a

result, ALN models were created for Gm and Gv only. For similar reasons,

models were created using only observations of impacts on State 1 (virgin)

samples.

Candidate input variables for the ALN models are given in Table 4.1. Only

those variables that were present for most observations in the data base were

used. Observations for which one or more variable values were missing were

not used in training the ALN models.

Figures 4.1 and 4.2 present the ALN models of Gm and Gv for the Series 300 and

Series 400 material samples, respectively. The figures show the inputs

selected by the models and the equations implemented by each element of the

models. Also given are the scale factors required by the models. The figures

show that impact velocity is an important variable, as are the material hard-

ness coefficients, N and A. Of the manufacturing variables, the graphitiza-

tion temperature and bulk density are important. Testing temperature is also

selected for the Series 300 model.

"Shear" was missing for many of the Series 400 observations. Because "Shear"

did not appear to be an important variable (it did not appear in the model),

the Series 400 model was also trained on the larger number of observations
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TABLE 4. 1: INDEPENDENT VARIABLES FOR ALN MODELS

GRAPH

LASTGR

BUL1KDEN

A

N

SHEAR

VEL

TEMP
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0.791 + 0.628 VEI/ 0.157 + 1.054Y
VE 1

VE' 31- + 0.276 TEMP' 2+ 0.240 No G -
m

TEM4P 0 074 (TEMP 2  N -- 0.157 N' 2

GRAPH' 3m 0.278 GRAPH' y2F-004 E 2G

TEM.P' ~ + 0.366 TEMP oVL: -238_V~

GRAPH' (GRAPH - 2990.60)/158.69

No = (N - .476)/.070

VEL - = (VEL -13.82)/2.133

TEMP' = (TEMP -2469.40)/2331.72

Gm = 7.27G' +- 24.18m

G= 5.58G' + 22.65
v

FIGURE 4.1: ALN MODELS OF G m AND Gv FOR VIRGIN SERIES 300

MATERIAL SAMPLES
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A"- 0.303 A'

G
VEL' + 0.839 VEL/ m

0.022 + .399 BULKDEN'

BULKDEN'

+ .850 VEL/ G'

VEL" 
v

+ 0.210 BULKDEN"VEL'

A' = (A - 456.31)/7315

BULKDEN' = (BULKDEN - 1.961)/0.019

VEL" = (VEL - 11.12)/5.96

Gm = 17.50 G' + 25.43
m

Gv = 15.61 G' + 23.25v

FIGURE 4.2: ALN MODELS OF Gm AND Gv FOR VIRGIN SERIES 400 SAMPLES;
"Shear" Not Included as an Independent Variable
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that became available by not using "Shear" as an input variable. The

resulting model is shown in Figure 4.3. Comparison of Figures 4.2 and 4.3

indicates the similarity of the models. Thus, the model was not sensitive to

the choice of observations making up the training data base.

Consideration of the physics of the impact process shows that the mass loss

should be zero at zero impact velocity. It is possible to constrain the ALN

models to this requirement by duplicating each observation in the data base,

and substituting zeroes for the impact velocity and the mass loss ratios.

Figure 4.4 shows the ALN models of Gm and Gv for the Series 300 materials when

so constrained.

The mass loss should be dependent in the kinetic energy of the impacting

particle, or approximately proportional to the square of the impact velocity.

The ALN methodology permits the resulting models to have a power law depend-

ence on any of the input variables. It is also possible that non-integral

exponents are appropriate to the data; if so, the appropriate non-integral

exponents will be discovered during ALN synthesis. For the available data

base, all of the ALN models are linear in the impact velocity variable. As

noted above, two velocity regimes are present in the data (three if zero

velocity is included). Thus the variety of impact velocities in the data does

not support higher order or non-integral dependence of the mass loss on the

impact velocity. More complete data could be used to make such a

determination.

Open porosity and CVD are thought to be important parameters governing the

erosion resistance of materials. ALN models of Gm and Gv for the Series

300 and Series 400 data, including these qualities, are shown in Figures 4.5
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A" 0 .311 A'

VE G'VEL' -- --- + 0.866 VEL'

0.026 + 0.382 BULKDEN"
BULKDEN,

+ 0.871 VEL/ G
VEL v

+ 0.219 BULKDEN"VEL"

A' = (A - 415.93)/37.11

BULKDEN" = (BULKDEN - 1.964)/0.022

VEL" = (VEL - 11.09)/6.21

Gm = 18.73 G' + 27.52m

Gv = 16.87 G' + 25.26v

FIGURE 4.3: ALN MODELS OF Gm AND Gv FOR VIRGIN SERIES 400 SAMPLES;
"Shear" Included as a Candidate Independent Variable

4-6



VEL 0.402 + 0.963 VEL'

TEMP' + 0.112 TEMP - 0.402 (TEMP') 2  m

N' -0.070 N'

VEL" + 0.950 VEL -B v

NA = (N - 0.477)/0.073

VEL" = (VEL- 11.025)/5.870

TEMP' = (TEMP - 2490.71)/2245.62

Gm = 11.69 G A + 19.29

Gv = 10.38 G - + 18.07

FIGURE 4.4: ALN MODELS OF Gm AND Gv FOR VIRGIN SERIES 300 MATERIAL;
CONSTRAINED TO ZERO MASS LOSS AT ZERO IMPACT VELOCITY
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OPENPOR- -1m 0.063 OPENPOR'
G-

VEL' + 0.989 VEL' m

GRAPH' 0.087 GRAPH-

VEL' + 0.967 VEL- V

GRAPH' - (GRAPH - 2541.07)/174.77

OPENPOR' = (OPENPOR - 5.79)/1.44

VEL' = (VEL - 9.55)/6.58

Gm = 14.54 G' + 20.84
m

Gv= 10.62 G' + 15.11
v

FIGURE 4.5: ALN MODELS OF Gm AND G. FOR VIRGIN SERIES 300 SAMPLES;
"CVD" and "Openpor" Used as Candidate Input Variables
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and 4.6. Here, both open porosity and the graphitization temperature are

selected. It is tempting to suggest that this indicates the importance of

open porosity ana graphitization temperature. Unfortunately, only 28 data

observations were used in arriving at the model. Additionally, all samples

that include open porosity and CVD as variables were tested at 40000. A

similar set of models for the Series 400 data (based on 19 observations) does

not select open porosity and CVD, and is quite similar to the other models

(Figure 4.6).

The above discussion pertains to a number of different empirical ALN models of

Gm and Gv for both Series 300 and Series 400 material samples. As noted, the

data base is limited in terms of variety and is replete with many missing

values. Nonetheless, the ALN models do show important features of the usable

data observations. Primary among the conclusions that can be drawn is that

the impact velocity is the most important variable in the data base. In all

cases, the models are linear in velocity. The data do not support higher-

order dependence on velocity, either quadratic or fractional.

Secondarily, the material properties N, A, and bulk density appear often in

the models. There are indications that open porosity may be an important

variable, but the models that include this parameter are based on very little

data.

Of the manufacturing variables, graphitization temperature and the last graph-

itization temperature appear.
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N' - 0.316 NG

G-
VEL' + 0.856 VEL7 m

A"[- 0.523 A"' G

v
VEL + 0.847 VEL"

N' = (N - 0.525)/0.037

A' - (A - 394.05)/12.52

VELI = (VEL - 11.34)/5.88

Gm = 19.97 G' + 32.32
m

Gv = 16.50 G' + 23.82v

FIGURE 4.6: MODELS OF Gm AND Gv FOR VIRGIN SERIES 400 SAMPLES;

"CVD" and "Openpor" Used as Candidate Input Variables
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The fact that the testing temperature appears in the ALN models may be indica-

tive of the difficulty in experimentally separating ablation mass loss from

impact mass loss at the higher temperatures.
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5. CONCLUSIONS AND RECOMMENDATIONS

The goal of this study was to investigate the feasibility of a unified model

of erosion of materials exposed to impact of single particles at velocities to

and including hypersonic. From the results presented in Section 4 it is

apparent that the development of an erosion model is quite feasible. Unfortu-

nately, the data which were available for this project had some inherent

limitations which precluded more definitive results. Specifically, the ranges

of many of the vatiables included in the data base were quite limited, and in

some cases the values of variables were constant for many or all experiments.

As has been mentioned in previous sections, the presence of missing parameter

values decreased the number of usable experiments.

In spite of the above data limitations and resulting modeling difficulties,

the ALN modeling procedure identifies N, A, bulk density, and graphitization

temperatures as the most important of those variables that can be controlled.

This work has shown that ALN models of specific quantities (Gm and G v ) may be

developed from limited experimental data. The next logical step in the prac-

tical use of the Adaptive Learning Network method is to use it in ongoing

experimental programs. It is recommended that new data be subjected to ALN

analyses as such data become available. The resulting models can be examined

to determine optimum manufacturing processes and subsequent material testing

to verify and further refine the models.
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APPENDIX

LITERATURE REVIEW

A-1.



The completion of much of the work reported in this document demonstrated that

the overall lack of data and lack of variability in many variables in the

available data base limited the utility of the work performed. A literature

survey was undertaken with the specific goal of locating additional Series 300

and Series 400 data that might be added to the current data base.

The following documents were reviewed:

Brown, Joseph, "Erosion Performance of Carbon Composite Materials", Final
Report for Contract No. N60921-79-C-0127, March 1980.

This report describes a theoretical study of the erosion properties of
nosetip component materials using the MACE computer program.

Experimental data are not presented.

Brown, Joseph, J. Cresswell, and N. Diaz, "Erosion Analysis of Heatshield
Materials and Concepts", Technical Report for Contract No. AFWAL-TR-80-

4113, September 1980.

The work discussed in this report used the MACE computer code to study

advanced concepts for heatshield material; no experimental data are
presented.

Carlyle, John D., "Comparison of Polyarylonitrile (PAN) and Thornel-50 (T-50)

Nosetip Material (U)", Report No. SAMSO-TR-77-90, May 1977 (C).

The report compares single-particle impact tests on T-50 and PAN mate-
rials with GE223. The GE223 data are from ETI-75-1929, CR-75-329,
cited previously.

Graham, Marlyn E., "GE223 Carbon-Carbon Single Particle Impact Data Summary
(U)", Report No. ETI-75-1929, CR-75-329, December 1975 (S).

This report contains data on GE223 carbon-carbon billets 317, 318, 319,
320, 331, 334, 335, 337, and 343. Mass loss and material properties of
the billets are given, but not the manufacturing variables.

Graham, Marlyn E., and J.D. Carlyle, "Erosion Materials Final Report, Vol. 1,
Hypervelocity Particle Impact Response of ATJS Graphite and a Compari-
son with GE223 Carbon-Carbon Response (U)," Report No. SAMSO-TR-76-226,
July 1977 (C).

Data presented in this report summarize single-particle impact tests
performed on ATJS graphite by ETI. Mass losses are given as a function
of specimen and impacting particle properties. The data do not include
manufacturing variables.
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McHenry, Michael R., "Design Technology Program, Vol. II, Erosion Model for
Hypervelocity Impacts (U)," Report No. ETI-78-2668, CR73-564, October
1978 (C).

This report describes a model for calculating mass loss ratios and
crater dimensions for single-particle impacts. New data are not
reported.

McHenry, Michael R., "Particle Impact and Dynamic Response of Advanced Nosetip
and Heatshield Materials (U)," Report No. AFML-TR-78-2040, February
1979, (C).

This report contains small amounts of data representative of a variety
of different materials. No data of use in the current program were
found.

McHenry, Michael R., and M.E. Graham, "Design Technology-E Program, Vol. III,
Erosion Testing Results, 1978 (U)," Report No. CR78-562, SAMSO-TR-79-
82, December 1978 (C).

Hypervelocity impact tests are described for a number of nosetip mate-
rials. Data useful in the current program are not included.

Phinney, Ralph E., and R.A. Leverance, "Single Particle Impact on ATJ-S Graph-
ite", Report No. NSWC,WOL/TR-75-199, December 1975.

This report contains a tabulation of data of impact of various parti-
cles on graphitic material. Data include determination of crater depth
and volume as functions of impacting particle type and velocity. Anal-
ysis of the data in terms of a simple theoretical model shows that the
crater depth was strongly correlated with the kinetic energy of the
compacting particle.

Review of these documents did not identify any data that could be added to the
data base for the present project. One document did provide partial data on
several Series 300 billets. Consultation with cognizant Government personnel
revealed that most of the available data had been supplied to Adaptronics.*

* Adaptronics Project Review held at AFWAL, 25 June 1980.
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